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It:is shown th&t und'er' c8rtai~.eo.~d~tio~s.a two-dimen- 
sfonal~subsonic com$resslble flow'around an airfoil profile a. 
can-be derived frdni an fncompfossi.bIe flow'aroiind another ' 
proffldl,=. The &.onnection'between these'twb "conjugate~~flows"~ 
is given by a simple tionformal'transformation of-the rospeE-. 
tYve hodogreph planes; , ,. a. : *. * e. . 

. . ,. .-: 7 . . 
'The transformation of a given incompressible flow ,%nto-: 

a com$ressibie'flow around a slfghtly'd~i.$torted,,prbfile.,r~-.'- 
duces to the fntegratio'n of a 1inear:p'artial differential.- 
equ&tion fn the physic'al plane'of the incompressible flow.." 
An approximate solution of'this equation .is indic'ated,.' Fur--' 
ther research is necessary in ord‘er to extend the'apglfoa-.. 
bflity of the method and in order to reduce the computational 
work involved in fhe:rigorous'solutfon to an acce-@table min- 
imum; '. -, * *. 3 I.. i I' . . . . 

The transformation of an incompressible flow into a 
compressible one:oan be carrfed,,out complefelg'arid'in a' 
closed form under the assumption of the 1inearised:pressuroL' 
den,sity,'relatioii: The final formulasrepr.esent an extension 
of the re.$ult of.?on K&rm&n'and Tssfen;to'which'they reduce. 
in the sbecial:case of a flow without circulation. .It.is.'. : 
shown'that essentially all compressible flows'can.be obtained 
by this method. i . . . ..' : . 
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The high level which ,has bee'n,:'att2a'lned by the theory of 
two-dimensional incompressible .flows is due to the fact that 
this theory is based upon a highly developed mathematical 
theory, that of analytic functions o'f:'a' d.om@lex variable. 
3verg analytic function yields a.possible flow pattern and 
vice versa. . Furthermore, the USC-of 'transformations per- 
formed by means of analytic functions (conformal transforma- 
tions) permits the derivatl,on of aJl~~ossI.ble flcws from a 
few simple standard forms. It seems obvious that the theory 
of two-dimensional COmpreSSible flows (at least as far as 
subsonic flows are concerned) requires the development of a 
similar mathematical background. 

The theory of, sigma-monogenic.functions (referenr3e.e 1 
63n.d 2) is an.attempt to study.a class.of.-conplex function8 
the role of .hhich In gas dynamics is combarable to that of 
analytic funot1on.s in the theory of incompressible flows.' 
Galbart (reference 3) has outlined the application o? this 
method to the study of'com.yressible flows.. Further applica- 
tions depend uson the investigation of singularities of . 
sigma-monoe:snic.functions. (Such an Investigation is being 
conducted.) Reference alLso is made to a recent report by-- 
Garrick and Kaplan (reference.4). The investigation of 
tran.sformptione which for. the case of compressfble flows take 
the'place of conformal transformations is the main theoreti- 
cal aim of the present rep.ort, e 

’ 

.'Ti~e folloying remark8 mayindicate in which way such 
transformations enter into the study of compressible flows 
around airfoil profiles. 

. . 
The differential equation8 governing the steady two- 

diPmensional potential flow of a.compr.essf.ble fluid ars non- 
linear and therefore'..difqi.cult..to .:treat -;as far as bcth the- 
oretical co,nsiderationsBand numerical computations are con- 
cerned. :&olenbroek (.reference...5)- and Tchaplygin (reference 
6) have .ohoun .that, .t-he eouations ?aecome linear fn the hodo- 
graph plane. There exist various methods of ob.taining solu- 
tions of these hodogra-ph equations, in particular of obtain- 
ing solutions which in a certain sense correspond to given 
solutions of the Cauchy-Riemann equations - that is, to given 
incompreaslble flows. Some of those methods are: eeuarati on 
of variables (so succeesfully used by Tchaplygin in solving 
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jet problems), the method of Integral operators (Bergman, 
reference ?>, the method of sigma-monogenic function8 (Bars 
and Gelbart, reference 11, and an a>proximste method of 
Temple and Yarwood.(reference 8). Further:mora, 'by modifying " 
the pressure-density relation, the hodograph equation8 can 
be made to coinci.de with t.he* Gauchy-Bfemanh eaSuations,'as is -.. 
done by Tchaplygin (reference 6), Dusemann (ref.erence 91, 
Demtchonko (reference lo), and, in a more ratLona1 way, by 
Von K&m& and Tsien (references '11 and:lZ).- ‘..';' '.I*, .. .'. 

9ow*ve'r, tha:real dlfficultynlies not'only.in obtaining 
a solution but in obtaining the "right" solution - that is, 
one which leads to a flow of a desired type in the physical. 
plane, for example, to a floti.around a closed pro'fiie. This ". 
difficulty is illustrated by the fact that even for the case 
when the hodograph equations."are 'srimply tie:B.atic,hg--8i.emann ' 
equations, the computat$cn of flow6 around closed profflea 
has until now been carried out only for a s$acial case (flows*. 
without circulation), 

. I, ._ . . ,. _ ,. .- ,.- . . . 
Thereiore $5~. study of~fbe,.flow~in~tbs hp.d.ograph plape 

must be su?plementad by the investigation of the mapping of 
the physigal.plgng Zntb ~th.~.~hodograFh~.plane 'and 02, po6slble 
transformations of incomgre8sib~e flows around closed pro- 
files into c0mpres~f~~f!.~~1(,~.~. of- the same type. . Th.e .gresent at:: 
report 3.6 an attempt in this dfrection. : 

. .~b~.CIiIe~$Od.6 :outlined,.ib tihfs.repdrf srB at pre6ent.'re- i 
stricted to flows which are everywhere subsonic. :PlOws of 
mixed type (subsonic main flow with locally supersonic re- 
gions) are .of more interest from the.theoretical.-as'well a6 1. Z 
fr,om the practical view-point. It is thought, however, that 
the soluticn of the pyoblem-of,entiyshg,subsonio f10w.6 is a ': 
necessary qrorequiefte foy;a.s~cces$fu~~:th~oretical.trctatmen~ 
of the much more difficult problem of mixed flows. 

., .'. -. :., .' .* . * 
This investfgatfon, carried out at Drown University, 

was sponsored by and conducted with the..financial assistance I. 
of the IYatd.onal Advisory Committee for Aeronautics-. The 
author is ..Cndebted t:c ?Er i. :JJ; ~.a.. 'Diaz-far.valtiable assL*tance. . 
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SYMBOLS 

. . 
speed of sound - . 

' .> 
l-ine elekuent in 'the z-plkne;' Wne, element of the 

profile P 

non-Euclidean length of ds . 

line element in the 
proffle ‘3 

t-plane; _ ,- line element of the 
’ 

..’ . . . : 

domain exterior to the profi3.e P . 
domain exterior to the profile 13 s 

) exponential function of ( 9 =.e() 

oomulox potential of an incompressible flow in the 
P-plane, normali-zed eo that St(=) = 1 

hod'ograph of a'comprossible flow in the z-plane 

distorted hodo'graph of a compressible flow in the 
z-plane ': . 

fmaginary unit; kubscript'referring to an incomprcss- 
iblc flow ,' . . 

- . _. -, 
imaginary part of' ( 1 '.' ' 

bound for the'ra'tfo ,rhf,tibxirnal speed to stream speed 
in tho con'jtigAt6 In'compreseible flow - 

3iach number 
: 

stream Mach number +. . ,. 

modulus of the correspondence between two flows 

subscript referring to the state of fluid at rest 

a function f such that If/RI---40 as WR,, R, 
being some specified Limit 
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RP 

?-I 

Re( ) 

T I 

us v 

U*,V* 

x9 Y 
x, y 

a function f such that 1 f/W remains bounded as 
. a* a,, a, being some‘specified limit 

pressure 

profile in the z-plane 

speed 

distorted speed 

speed of an incompressible flow 

speed of.a fictitious'ccmpressible flow in the 

positive constant 

radi'us of curvature of the profile P 

radfus of curvature of the profile n 

real part of ( ) 

coefficient of the.symmetrfzed hodograph equations 

components of the velocity 

S-plane 

components of the.distorted velocity 

Cartesian coordinates in the z-plane 

Cartesian coordinates in the Z-plane 

. Z = x +.ly complex variable in the physical plane of the 
l compr.es.sible flow 

. Z = X + iY auxiliary complex variable 

Y exponent in the polytropic relation 

P = t + in complex variable in the plane of the incompress- 
. fble flo'w 

c 8 angle between the velocity vector of the compressible 
I flow and the x-axis 

. 
t 

/’ 
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kgle.between the velocity vector of the incompress- 
ible flow and the- 'f-axis 

* l 

l 4 

logarfthm of the distorted speed c ; 

value of the distorted speed It Infinity *or- y = -1 

Cartesian coordinatas in the t-plane 

profile in the P-plane 

density 
. 

density of.the fictitious compressible.flow in the 
S-plane 

velocity potential 

angle between a line element de and a streamline . 

stream function 

complex potential of the conjugate'incompressible fib-w 

complex p'otentiai of an incomp.ressible'fibw around > 

the circle lZ:I = R., 

the point infin$ty.; subscript referring to the state 
of the flufd'at infinity 

complex conjugate of ( 1' ' ' ,' 

absolute value of ( > ' . ' ' ' 

The units are chosen so that $o' (.stagnctioi density) 7 -- . 
& a0 (speed of sound at a stagnation point) are both 
eaual to unfty. . b 
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,.:.. .:.., ANALYSIS . . 

. . I* GENXRAL CONCE)PTS 

Fundamental Relations 
* 

It will be assumed,that in a. compressible fluid the 
pressure p is a given increasing function of the denslity p. 
The velocSty of sound !a,:,ls given by . 

*. . . . . 

.- . . 

. . 
If.the flov'is ir,rotational; 'it follows from.Bernoulli's 
equation 1 . * . 

., . : . ' :;>. !.-. . 
L 

g+ C-Lo 
s P 

' / , PO.,’ ., . . 

- , ‘I’ : 

that the density is a given 'func't'i.oh Qf the speed q. Since 
the preceding equation can be written in the form 

. . - 

q dq + a2 y = 0 

. 
the Mach number I*: = q/a is 'given by the relation 

. M,? ‘i’ .l;, %& , y . 

, t .. 

. , 
_ . 

,The units will be chdtien. bo t'hat ' 
.e a.’ 

. 
* . ‘-. .: . 

t I’, ~ * I, ,.. .* 4 ~ .‘.--.. . ,. . . 1 ,. 1 ,F , : ‘- .- 
. *, .‘. 

a, ‘t. ‘I, Pd-l- ,-. (1) 
., 

* 
. . . 

. , 
(the subscript o .refeyring to the stat.8 o-f th'e fluid at 

. rest). to the introduction of dinension- 
. less variables . .* ,.&+ :. * .,I . . y, -. : : 

' , 
. 

., t 
l . 

, 

. .: 
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The pressure-density relation used in gas dynamics is 
of the form .: . 

. 

l . 

P yA + Bpy (2) 
1 

This relation includes the 'cask.'bf an isothermal flow, where 

. I Y=l (3) ' 

and that of' an adiabatic flow.with 

l-= 'Y -= 1.66 (4) * 

(The standard value of Y 'for air is 1.405.) The value 
Y = 2 .cor.responds to the analogy between a two-dimensional 
gas flow and a Sl'oy of"tiater in anopen channel; (Cf., for 
instance, Von Karman, reference 12.) In the foregoing-cases 

A = ?,, B = po 

. 

, 

The differential equations of a potential gas flow are con- * 
siderably simplified by introducing the linearized pressure- 
volume relation with ? 

. ,’ 
.Y.=il -, ‘. (5) 

and 
. 

A =pm+aEpa, 'B=-azpz 
, . . 

!avhere the subscript co refers to the state of the fluid at 
infinity, and %I, Pm9 Pna ,.have been determined according to 
the actual pressure-den'sitp relation (with A = 0, B = par 
y4 1). Using thi's relation amounts to replacing the curve 
giving the actual pressure-density relation in the <l/p, PI- 
plane by its tangent at the pofnt (l/p,,. p-1. The linearized 
pressure-density relation has been introduced by Von K&m&n 
and Tsien (references .ll and 12),(and formerly in a less gen- 
eral form byTchaplygin (reference 6). Demtchenko (reference 
lO),,and.Buseman, (re,ference 9). 

. , '.. 
The' relition& 'b'etwean p, M, and 

(2) depend only upon Y 
obtained from . 

(and not urpon A4 and Bj-. For Y=l 

. 

. 

r, 
. 

l 
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for Y # 1 

p = 
( 

l/O-1) 1 ” Y’ ;’ 1 ?qa) 

80 that for Y =a 1 

. . 
“‘: 

and 

.t . . 
t 

. 

*. 

.-r 

:‘;P= ’ 
d-&p 

I . ..,. ., :: * . 

a 
M = 

a . 

‘1 + q” ,: 1.” . . - 

(6) 

(7) 

(8) 

(10) 

(11) 

,-.I . . , :..r .:.; 

p’a’ = 1 -- &f:” . . (12) 
r ,I -. . . . . 

.‘Y 
In figure P, p. fs plotbitb a8" a tinction of q (for 

= -1, 1, 1.405). .:: --: ., ., : >.i.'. 
, 

. 
r 

Yor Y = -1, the flow.!.s always subsonic. 
the flow is subsonic as' 1oti.g: ae 

For Y # 1, 

It will be conveni.@i$ to 'us& .the distorted speed q* 
(first introduced by Busemkn (reherence 9)) 

. 

M 

, 

i 

, 
s 

* (14) 

, 
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Por 

for 

q* = 1 for 'M = 1 

Y=l 

BACA,TN No. 969 
. l 

Y>l 
r Y-P1 4 I 1 f- y,1 

and for Y = -1 

q"=. Q, 
. 

i +JT : . . 
(In fig. 2 q and q* are plotted as functions of M 
Y = 1.405.5 I' . 

For an incompressible fl.6~ p is constant, M = 0, 
and q*=q. 

Equations gf, Motion *- .. 

(15) 6 I 

(16) 

(17) 
. 

08) . 

for 

I 

, L 

of-a 
sati 

,The x and y pomponents of the dimengiocleps velocity 
two-dimen!ki%nki potenti-a5s'~teadyrgas flow,' u and v,. 

sfy the condition of irrotationality -. --- . * .' 

: ‘. 
.’ .: . 

and the continuity equation. :. . ’ 
. . 

“$y’ .+,yg =I 0 
Y 

These equations imply the existence of a velocity potential 
cp(X,Y) and of a stream function QkY) so that 

. 

. 

d 

. 

. 

. 

1 
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c and 

l 

It foll.o.ws that 

i 

. The elimination of- either ,$ or 'cp leads'-;t.o. the second- 
order equations I.. I,' .: r...., . 

p-7 + ‘: .$$:.pu=g. . 

L 

(19) 

(20) 

121) 

(22) 

(23) 

“I 

TLe fundamental equations (21) to (23) are'.of a purely kine- 
matic nature and hold ,d$d'ependently of 'the..equatIon of state, 
If the density 1.6 considered a‘6 a &Pen function of 

II space (P = p(x,;H, the equations (22) are linear.and always 
of the elliptic type, no matter whether the.floti fs subso.nic . or supersonic. . . . ., .: 

r 

. However, the important case ,is t.hat in which the density 
fs a given function of press'ure and therefore also a given 
function of the magnitude of the (dimensfonl.es.s)~velocity' *' 
c( =dm. ICfi pPecehi.hf? sec.‘) In th~s.~.c~~~s~~~~t,~~~~'. 

21) to (23) are non-linear more precisely: . . 
. ,' 

The velocity distribution 5n.a given flow is uniquely 
. determined by the boundary cd,nditions and by the functional 

relatfon i 
. - 

. .. . . ‘.. 

i 
,‘ 
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. 

This remark justifies the use of the relation Y = -1 for 
subsonic flows of not too high Mach number. For, replacing 
the actual value of 
(and tha 

y by -1 change6 the function p = f(q) 
diff erential equation for VI, Q < 1, only 

slightly. (Cf. fig. 1.) From the equations given in the 
preceding section, it follows that the change of p is of 
the order of magnitude . 

Y-+lM4 
8 

Molenbroek (reference 5) andThhaplygin (referenca 6) L 

6howed"that linear equations can be obtained by.considering . 

cp and J, a6 functions of q and 0, where 0 is the 
angle between the velocity vector and the x-axis: 

8 = (tan-l) z (24) 
. 

The kquations take the form 

32 = 3 i?!L a9 0s 7 . (25) 

These equations can be brought to a symmetric form by replac- 
ing the independent variable q by 

h = log q* 

q* being the distorted speed. By.virtu-e of (14,), (25) can be 
written in the form 

. (26) 

, 

. 

. 

- 

. 

I 

\ 

4 

I 
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. .- . 

L TaJC7 . (27) 
P 

. . .’ 

For the isothermal"case (Y = I) : ' . . '. 

' T=dg$ 

For the polytropic‘ case (Y >;l)- " . . . . ,., 

(28) 

.y.+ '1 'is . 

T = .( 
iL 

8 . 
2 .'. 1 ( 29 1 

:' ( 
1 e y - 1 qa 

) 

& (nf+l)/wl) 

a. 2 . -, : .'; . . . 

X'or the case of the linearized equation of state (Y = -1) 

3 

. . 

TE1 (30) 

I 

. 

. . . ..‘- I,. 
.I . -L 

. . : 
and equations (26) are Cauchy-Riemann equationsr, .In f.igure 2, 

is plOtted..as a function of the local Xach number M (for 
F = 1.405). It' shoul'd 'be',nofed'that. T is a known function 
of cl and therefore also of q*; 

The main advantage of the symmetric form (26) consists 
in the fact that the symmetric equations are invariant under 
conformal transformation of the 8,hplane: If new il=de- 
pendent variables e and Q are introduced by setting 

. 
e f iq = F(0 + id 

3 being an analytic function, then 
. r.. h. - ,. . 

-., . . 

(31) 

22, -T s?iL 
aq ae J 
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wfth - . 

.* . 
In fact, (26) can be written in the form 

. 

Eliminating the derivat'iveg of t. sa,nd Tj by means of the 
Cauohy-Riemann equation.6 ' . 

. , 

yields.-(31); 
. . : 

In particular, 
f0ii0wf3: 

the disto.rted velocity may be de.fined ae 
. 

_ .' 
I. .I _ '.. 'u*,'- sv = e ' * i- i ,g r-ie 

,,, . * = q*e, ,, _. ,, *. .;. 

, 

* ( 3 2.*> 

Then 

. . 

. . 

(331 ' 

Since T is a given function of u*a + v*a = q*a I the seer 
ond- order equations obtained from (33) are m 



. 

e * 
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Acp - 2 y (u *acp+,*.AL -0 'a 
&Cl* av* > 

., ..-..,-. 
'T' 

, .., . 
A+ +'2 'I! 

. 

r 

, 

s 

e 

* 

. 

i 

, 

i 
where 

. . 
A= (aZ/au*a) + (as/:av*a). and, 9' = dcc/a~*~ 

Distorted‘Rodograph of a Flow around a Profile 

Only the following types of flow will be considered in 
this paper. The flow covers the.domain exterior to a pro- 
file P (domain E‘(P))', At infinity-the flow approaches a 
uniform flow in the positive x-direction, so that 

lim . u = qo3 5 0, lim v=o (34) 
xa+ya& co .' .a xa+y Ye-w 

The flow is everywhere subsonic (I? < 1). The profile P is 
a streamline of the flow; P is a piecewise analytic curve 
posseasing at most two"sharp edges. 'If there are sharp edges, 
the Kutta-Joukowski condition is satisfisd. There are exactly 
two stagnation points, both situated on P. A uniform flow 
u E constant, P‘ ~'0 is excluded. (F or' the'sake of mathemat- 
ical discussion it is convenient to admit as l'pr6filesti P 
curves which intersect themselves‘in a finite number of 
points. The exterior E;(P) 
ered Riemann surface.) 

is then a partly multiply cov- 

Incompressible flows considered will be subject to the 
same restrictions, except that the edges need not be sharp. 

The transformation 
,, . . 

U = G(x,y) * .v = dx,y) 

takes D.(P) into a domain H o'f the (u',-v)-plane; H (the 
hodograph of the flow) is,in general,multiply covered. The 
transformation 
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u* = q’q = q*,.cos 8, vc*,=. sT v (36) 
9 .I q- 

= ,-q* ,SitI 0 

. 

. 

. I 

. 
takes Up) into ,a domain Hy of the (u* ,-v*)-plane. This 
domain will be d8noted"as 'the distorted hodebgraph of the flow 
(cl* and -0 are the polar 'coornatee in the (u*,-v*)-plane;. 
(Cf. fig. 3, (a), (b), (c).) 

It is known that in th.e case of an incpmpressible fluid 
the mapping. of thu' floiv' int-o i't'& hodd&raph"is conformal. It 
will be shown that the mapping of E(P) into H* can be con- 
sidered as conformal if angles and distances in E(P) are 
measured by...means of a certain Riemannian me-tric generated by 
the flow. 

Transformations‘ Conformal with Respect to a Given Flow, . 
Given a subsonic compressible flow covering a domain D 

of the (x,y)-plane. Let as = (dx, dy) be an infinitesimal 
l'fne element situated at a point. x.,y of D, .M the va1v.e 
of the Mach number at this pofnt,' and x the angle between 
ds .and the streamline passing through x,y. The non- 
Euclidean length of the line element ds shall bo definsd as 

, ' 
. 

‘1 - Ma iin” x (37) - 
. 

Let'. a be the' aaglle'between the !<in'e element ds and 
the x?axis.. 6tnc.e. x = *(8' - a) and dx = .'ds doa a, 
dy = ds' 'sin a, it is easily .seen that .(.37) can be written 
in the.form ,. - . . . 

aP = 0 axa + 2f dx dy c g dy" , (39) . . . 
where . * 

, : .A. '-..$ 
. . *,' . 

Thus (37) fs a Riemann metric. 

(39) 

. 

. 
. 

. 
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de = 
.A Between two line elements 

cos A "e 5 dx 6x +-f(dx 6y + dy 6x) + g dy 6y 

as 6s 
. 

6S being the non-Euclidean ,length of Ss. . . 
A transformation . . 

e = g(x,Y), !'II = Tl(x,y) (40) . 

of D into a (simply or multiply covered) domain A of the 
(t,G)-plane will bs cal,led conformal with respect to the flow 
if it preser.pes -the'sense 'of rotation and takes each non: 
Euclidean an'gJ.e A. (in the.'(x,y)-plane) into the Euclidean 
angle A. An e uivalent 

4 
definition is thu following. The 

transformation 4.0) is conformal with respect to the flow if 
it preserves the sense of rotation and if the ratio 

. 
where dS is the non-Euclidean length of a line element ds 
in the (x,y)-plane and .'dti, the.Euclidean length of its 
image in the (e,Tj)-plank, depends only upon the position (but 
not upon the direction) of 6s. The symbol A is called the 
local factor of magnification. 

If D is mapped conformally with respect to the flow 
into A, and A is mapped conformally (in the ordinary sense) 
into A‘, the resulting mapping of- D into A' is conformal 
with respect to flow. Conversely, if D is mapped conform- 
ally with respect,t,o the flow into.both .A and A', the re- 
sulting mapping'of A into' Ai 'is conformal in the ordi- 
nary sense. 

b transformation. (4O)'of E(P) into the ([,v)-plane 
d conformal with respect'to tl?e flow if'the p otential ----- 
function and the stream function considered as func- 
tions of m- - -6118 diffezential equatizs (31). satisfy _ 

This,follows from lemma 1 proved in the appendix by set- 
ting A = l/p, B = T. . - , . 
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If the. foregoing result is used and it is noted that cp 
and @ satisfy equations (331, the.following important theo- 
rem is seen to be true: 

* . 

. 
The mapping.of the exterior. .E.(P) & a profile P into 

&& distorted kodonragh of a subsonfc co~~prassible Plow -- 
around P is conformal with.respect to this flow. -- 

Mapping of'a Compressible Flow into a Domain 
. 

Exterior to an Arbitrary Profile 
. 

The distorted hodograph of'a 'flow around an airfoil is 
a simply connected Riemann surface bounded by's closed curve 
(the image of P). By a known theorem of function theory,. it 
is possible to map H+ conformally into an arbitrary si-mply 
connected domain. bherefore, ,it is possible to map R:(P) 
conform&lly with respect, to the flow into the domain, X(n) of 
the (t,q')-plane , ,exteriar to .a gdven.pr.ofile 17. ' The mapping 
can be chosen so that. the point f e 5.7 5 co corresponds to : 
the point x f iy = co and that the horizontal direction at 
infinity is preserved (i.e., at co the direction parallol to 
the x-axils is taken into the .direction parallel to the e- 
axis). Furthermore, by eventually changing the size but not 
the shape of 17 it is possible to obta-5n.a mapping for which 
the local factor cf magnification is eq.ual to 1 at Lnfinity.. 
Since at infinity the metric :(37) approaches the metric with 
constant coefficients . ', 

dS" = dx" + (1 - M2ddya 

the above conditions mean that . 

(41) 

as 

Xa + y2--wQ 

A transformation satisfyfng these conditions will be called 
nsrmalfzed. 

. 

. 
, 

. 
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If Z(P) is mapped conformally with respect to the flow. 
into E(m), the resulting correspondence between the.goints 
of H* and those of E(l-i) is conformal. Therefore, 
u* - iv* is a one-valued analytic-function of t + 17) and 
can be developed in.a Laurent series for sufficisntly large 
values of 14 + ill]‘.: .The followfag result will be used later. 

Letimia. -2; into E:(l1) is nor- -- 
mali5X, 

If tOhe mapping of E(P) 
' ' then . :. . . ,. . i . I . . 

.ir Jz* - iv* .= q*, - I ,l ‘.+. i : . * (42) 

where- . . . . ',' . . 
;;, =jy-+ ,:, '. . . . ,: ‘c43j 

.' : .,' * .. ,. . . . . 
and . . -. 

. 

_is the circulat:on of the compressfble flow. -- ---_ 

(44) 

The proof.will be ,found in the appendix. 
. 

C.onjugate Flows' : 

Given a c,cmp'ress'fbl.e. flow. (in’the (x,7)-plane) around 
the profile P, and'an $.ncompressible flow (en.the (f,Y',)- 
plane) around a profile"1-I'.'. T.he -comp:lax.potenti,al of the in- 
compressible .flow ijill., be .de'noted! by SX.D = cpf + I@, . Its 
complex velocity fs' - .' ..' ' .. ;. . . . . 

,. .. 
9 

Since it fs assumed thaf.at infinity- 6i *= 0; fJ ‘can be 
written in the-form 

, ' 

The two flow6 will be c.al1e.d .:c‘bn.iugate (module n), if 
there exists a real qumb,er .n, 

. 

,. 
,. 
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,. a 4 ; . ,, * 

. ’ O’C Ii < 2 
. .,.. ,, 

such thq.t':the traneformation' ,, . . . 
. . ‘, n. 
: ?.. . : 

,ui ri iVi..y (U* - 'i,v*) ,.. (45) 

takes $he dfst,orted hodograph H* 
into.the hodograph Hi 

of.the compressible flow 
'of the incompressible flow. The con- 

nection between con@gato flows is shown in figure 3: 

* The mapping.(45),defindsa mapping of. E(P) into E(I-I) . 
This mapping is conformal u$th respect to the flow around P. 
For so is the mapping of E(P) into H*; and the mapping of 
H* into Hi (given by (45) as well as the mapping of Ed 
into E $--I) 
of E(P) 

are conformal,in.the ordinary sense. The mapping 
illto E (17) 'preserves the'point infinity and the 

horizontal direction at infinity (for at infinity both flows 
are horizo.ntal). On P ( on t-l) 6(6d) is the slope of the 
profile. According to (45) the,slopes at corresponding 
points are connected-:by,the,.relation _ 

' 62 = n6 (46) 
. 

(The slope is defined as the angle between the tangent to the 
profile and the positive x-axis; the tangent pointing in the . 
direction of the flow.) . 

. : 
Conversely, if it is possible to map E(P) into the do- 

main 3 (I-I) in; the:( [,Tj) -planeL.exterfb.r to a profile f-i, by 
a transformation"which is conformal with respect to the com- 

,-.prassib'le flokr around 3., whioh preserve6 the point I) and 
tho;hor$ion-ta2 direction at- infinity, and which changes the 
slope of P according to (46), then the f'low 'around P is 

conJugats (module n) to an incompressible flow around 1-1 
which has stagnati.o'n podnt-s a,t ths.points into which the 
stagnation points at P are'taken and the direction at in- 
finity of which is horizontal (provided such a flow exista). 

* For, let be the c.omplex poten*tial of. s,uch. a flow, 
G'(m) = 1. Set 

, - 
u. - 1 ivi = q*$ G'(c) ' 

. 

The maDping' of E(l-7) into 'H* 
u+ I i+ 

‘i6 conf'ormai - that.16, 
is a one-valued analytic. func'tion defined in E O-0 . 
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Therefore, 6. = 
coinbides. on. I7 . 

-Im log(u*.- iv*) is harmonic $n E(n); ng 
with the.harmonic'function 

ei = -1m logCut - iv;>. Therefore, (46) holds throughout. 
x(1-!> . Since 11 log q* is conjugate to n9 and 
log tqf. =-log I:ui - iVi\ to 8% '. 

. . * . . . 

. 
., 

-- . 
'log'ql‘,= nlog q* + ,constant 

'The ,above -constant must 'vanish, for at infinity : . 

q*z = qi ,'m 
. . 

Therefore : . . . : 
: 

. . q*n = qi (47) 
. 

and by (46) and (47), (45) holds. 
..,. . .-. * : - .If 'an in-compressi.ble flon"i's conjugat'e 'to a subsonic 

compressible fl,ow, then ,. ,. ~,, 
L 

.? . -. ,,. ., ,U;fiax(.g . . .: 
(48) 

qi ,cu 

. , 
where qi:,max is the maximum s'peY&i .,and K dep.ends,upon n . . 

: -and the ‘stream Ma‘ch:number- . MM, o:f the compressible flow. 
For' q*mai musP'.bs less than 1 (cf.. (15)') and therefore, by 
(47) . : 

. (49) 

Note that q*, is a function o'f 'q, and therefore also of 
M CO. 

If the incompressible flow with the complex potential 
a([> is conjugate to a gi'ven compr,essible floti, 80 is the 
flow with the complex potential 

. 
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for it has the same hodograph.' Thus the conjugete profile 1-l 
can be chosen so that the mapping of NP) into E (1-t) ,' i 8 
normalize6; I 

If the incompressible flow around. 1-1 
. . 

compressible flow arcund P is known,' 
conjugate,to:a. 1 

then the velocity &is- 
tribatiou (and therefore the pressure distribution) around P 
can be immediately computed. For (46) gives the correspond- 
ence between t:-e points of I? and P, 
corresponding :+oints are given by (47), 

and the speods at 
however, the prosent 

method has not been developed sufficiently to permit a solu- 
tion, of t'he direct nroble:.:: to find the incompressible flow 
conjugate to a comprsssible'flow~around a given profile P. 
The following sections contain the solution of the inverse 
problem: to find a ccnuressible flow around a closed profile 
cQ,njugate to a given incompressible flow, and the discussion 
of the existence of conjugate flows, which is by no means 
self-evident. 

I.1 '. -' GOXSTRVCTIOE OF SUBSONIC FLOWS AROUND A PROFILE VNDER 

THE ASSUihPTION OF THE LINEARIZED EQtiATIOaT OF STATE 

Simplifications Besult,ing fr.om the Assumption 'Y = -1 

Throughout this chapter the pressure-density relation is 
assumed to have the linearized form - that i's, Y 5.. 8 8 e t 
equal 30 -1. Under t:ilis assumptiop it can be shown that under 

'very'gener.al conditions,each compressible flow possesses a 
oon,iugnte incompressible flow and vice .versa. The inv*erse 
problem can be solved completely and in a closed form. 

The assumption Y = 
cations. 

-1 i,mplias the following eimplifi- 

1. The differential equation of the potent.ial cp in the 
physical plane takes the form 

I . . 
. 

(50) 

. m 

. 

. 

. 

l 

. 

. 

. 
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(.p$... (2$?) E@~*:(&(!):. ) Thus. .thes surface ~ ,. 
.1 *-... '- . " . .: . : *. .. 

Z = p(x,y).." : . ,' :, t 51:) 

(pat8ntiki 'sur~a'ce)-: %~-!'a mia.imal surfa& (surface of virnish- 
ing mean curvature).. '. '. _ 

; ,.a . . -* 
2. The non-~uolideki -lengtd',dS 

in‘ the (x,y)-plane (cf. 
df a line element ds 

sec. Transformations Conformal with 
Respect to a Given F1p.w) be.come..s equal,.tol .' ;. - 

as = dlJ1 - M” . ,’ ,:;. 
where dt is the Euclidean‘len'g$.h of the line element on 
the potential surfaces the projection of which is as.. . . . . . . 

- . :$or., .if..t.he.. angle ,betw.e+~ the direction of the velocity 
,vector and ;ds L $3 denoted by - .i,.' it foll'ows .frcm (37) that 

.., - . . ' .- ~ I . . :. . .- . 
-!.. 

+ u"$,.dx;f + 2UV dX dy f (1 .+ V’) dy 

3. The term rp + i\L is an analytic function of ud -'iv* 
and of the complex var.&able in any;,plane intp.:,which 
map ed conformal.I$ yith rAspeat fc the flow.*. (Cf. 

x(P). iy ., 

(33P.I 
(30), 

Rxistencs',of'Oonjugate .F&ows : . . .- 
-., . . 

It will be shown presently that to any compressible flow 
around a profile P in the z-plane (obeying the linearized 
aquat%cn .of state) there .exists a oonjyga.te -floVT cf:,.an,incomb 
pressible fluid around a profile 1-1 in the t-plane, prcvtded 
either of the following two conditions is satisfied, 
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(a) The compressible flew is circulation-free. In this 
case the modulus n can be chosen at random. In particular, 
it is convenient to set n = 1. 

. 

* , 

c 

(b) The compressible flow possesses a circulation and 
the Mach number at infinity is restricted by 

I ;.’ 
M,oD<Jw = 0.866 ._ ., . ,. (52) 

In this case the modulus n 1.s .g'iven 'by - ' . _ 

.’ 1 --- n.=, (53) 
, I J- 1 - MZ 

(Cf. fig. 4.)' " 

” Fgr thgi hroof ,’ 
X2 +' T, = R 

E(P) .into the exter.ior of a circle 
in thcmi!plane (Z = x + IY, R being a conven- 

iently chosen constant) by a/normalized transformation which 
is confor:!lal with respect to the given flow. Then the corre- 
spondence between the distortod:hodograp.h g* of. the com- 
pressible flow and the domain lZ1 >R is conformal - that 
is, u* - iv* is an analytic fur+ction of Z. By lemma 2, 
this function has the form 

. . . 

(54) 

r1 being given by (43). Further-more,.' cp + I@ is an ana- 
lytic function of u* -*iv* and therefore also of Z, 
[Z] > R; JI = 0 on [Z] = R for q = .O on P. If Z goes 
once around the aircle lzl = R, cp + ?.$I increases by r. 
Next, 

liin 22 lim 
z +c&x =. z --, m . 8 

lim &Q = lim 
1 
acp ax 

z4dY 
+arpay =o 

z-2 a* ZF a+ 3~ 1 
i 

. 

.- for the mapping is assumed .to.'ba 'ndrmalitied. it follows 
that , ..' ,. I.,' ' . . 1 ., .I . 1 . ' 

. 

. 
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cp + i\lr-= qJZ + $) -:z log Z.t constant = &+(Z) 
. . . 

25 

Thus cp -I- ?I$ is in the Z-plane the complex potential Of a 
flow around the circle LZj = R. This flow necessarily pos- 
sesses two stagnat.ion ppints on'ths circle I z 1.k ,R: namel.y, 
the 'images of, the stagnat.ion points on P. For at these 
points the lines \1, = constant intersect the circle. It 
follows that . ,I ', . 

a&p +’ 144 =. 
dZ (55') 

vanishes at the same points (Z = S,I, Z =.'s,'i' ki = -8,) as 
does u* - iv*. . .' 

Assume,that there exists an.incompressibl.6 -flow around 
a profile .I7 in the t-plane which 'is conjugate.(modulo n) 
to the compressible flow around P. *Let ' ., 

.:_ I 

map EV) conformally into 
Z 

[Z\ > R ta$ing..l 5 @ into. 
= m. Without. loss of generality ,i't may'bc assumed that . 

zt(& =. 1: : 

Then the complex potential Ql 0 = ni + WI of the incom- 
pressible flow must in the Z-plane,%+ bf,.the*form,. ' 

.The complex velocity .oflthe conjugate flow, ui - ivi, 
is given by .', . 

ui - ivp = AC&... 
d.t 

', . 

On the other hand, 

ui - iv1 = (xl*, - %Pp 

. 
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Therefore 

iv* jn 
. ,. : 

so thtit a 
;. _, , .‘. 

‘(56) 

The numerator of the integrand in the above formula 
posses6ss simple z8ros at the two stagna:ti,on points. It can 
be easily shown that at the two stagnati-on points (in the Z- 
plane) u* H iv* vani'shcs of an order no;t' higher than 1. 
$03: at these points Im log(u* - iv") = -8 possesras jumps 
of magnitude CfR, sj#fl and ei3-J being the angles at the :. a . I .' L 
stagnatibn points on P. Therefore Re log (u*, -c.iv.P). = log q* 
behaves at these points as cilog'lz - si I* And it has been 
as sumed.., .that 
0 <', Cf. 5 1,. 

P possesses .o&ly sharp edges if.any, so t:hat 
It follows that at. S, and Ss the integrand 

becomes infinite of an order less'thbn 1, provided 0-C ni 2. 
At all other points Z, jZ) 2 R, the integrand is differant 
from both 0 and m. Bonce the integration can be performed 
also along the circle IZl = R. 

. 
i&if, since !-I was assumed to be a clOsed curve;".the 

integral (5G) must vanish if the integration is performed 
along the closed circle lZJ = 23.' By (54) 

. 1 r ,- ' " 1 n. ,;r, .1 
(u* - iv*) n =- l-p.----+ 

9*n ( CJ 2Trz l -’ > 

co 

so that the integrand in ('56) e-qua'ls 

In order that the fntegral"takeh"al*on~"a closed curve should 
vanish it is necessary and sufficient that 

- . 

l 

. 

, 

. 

. 

. 

L 

. 

. 

. 

. . ,. ,’ L 
? , 

r. 11 l.yL~)--. :. . 
* co 9, 21-r z 

. 
. 

. 
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or, by.virtue of (43), that ., . 7 . '. 
,.- , . ..a . . . .*' . . T . '. .,. 

= 0 
, -. . . -' .: . 

(57) 

. 

c 

I. ., . . . 

:- 

This' conditionwill be satisfied if either r =o or n 5.6 
'--determined according to (53). In.this last case the condi- 

tion n < .2, yields the boun$, (52) f.or 
. . -. . a. . . .-- +yr , * " , ., . . .,' '. _ . 

Conversely, if ('57) holds an'd 
maps' VI > ;, the 

n <:2, the function (56) 
conformally into the exterior of a closed 

profile I? i-plane. (Note that th e derivative of 
this function doee not vanf:sh.') 'This.'mapping satisfies.the 
conditions ' . . I . 

. 

I 

' Thee resu.l.ting' mapping 'of _ g(P)‘ in-to‘ E(lX) 
' wi.th respect to:'the fXdw .ar'&nd P. 

i,s conformal 
Obi&ksl,y, 1 , . . ,.a. . . 

4 

* . 

. 

. 

. 

, 

. . 

*. . . , .,.. * 
is the complex.petential of an inco,mprsssi,ble flow around -17. 
T.he .complex v.aloc~ity cf this flow is equal to (uY* - iv*)n. 
Thus the .flow.is- cpnrjugate to t,he compressible flow arotind P 
and thg.aasertions foimulated in-the beginning of this sec- 
tion are;proved. . . . . : 

. . ./. . : 
. ,-. ,,: 

Properties of the‘conjugate Flow 
,'. 

From the construction of the conjugate flow given.in*the 
preceding section, it follows that the circulation of the 
conjugate incompr,essibLe f&ow -is equal t,of... 

(r being the circulation of'the bompressib;Tp;low), provided 
l-1 has been chosen so that the mapping of 
is normalized. 

into E(11) 

. 
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Tor the conjugate incompressible flow the rati'o . 
qi,max/qi,co cannot exceed K = q*;u. (Cf. end of pt. I.) 
Zor Y=-1, 

, '. I 
. . :. 

(The iaige.s,- of X, 
.. 

are plotted.in fig. 5.) 
. 

It should be noted that the profile 1-l constructed in 
the preceding section is.necessarily: closed but need not be 
simple - that is, 17 might intersect itself, in which case 
E(l-I) would be.,partly multitily covered.. ,For this reason such 
physically impossib1.e fl‘ows'werel 'included in' the discussion., 
It is easily 'see& that 1-l 'will always be. simple If P 'is 
convex. .- 

. 

- I 

. 

Solution ,of'the*-Inv'ersz Problem . 

Suppose that an incompressible flow around a profile 1-i 
-in the' c-plane is. giv'en and it,'is known that this flol.1 is 

conjugate-('hodulo n) to a'c'ompressible flow around a pr-ofils 
* 

P : $S“jjtie"' z-plane i'. ,' This 'se,ction'con,tains the.derivatfon of 
the formulas which. permit finding P -and the'compreseible 
flow around P. It will turn out that these.farmulas always 
yield a compressible flow around a closed profile, even if 
1-1 and the flow around I7 are chosen at random. ..I L' 

Let the complex potential of the incompressible flow be 
giveA inl.the,form. .,' 

* -, ..' 

Since cp + iv (complex potentfal of the compressible 
flow) considered as a.' functi,oL.,-cyf 
on I-1 

5 ,,is',analytic and real 
and since a(?p + iqqq vanishes..at the stagnation 

points of the incompressible X30%, : 
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CI being a positive constant. Without loss of generality it 
may be assum& tha.t. the, mappin,g pf E(P) -into E (l-i) is 

normalized..:.Then . ,.' .-. .". . (. . . 
. 

Y 

. 

.- . . . . : 
Now, &et ds be a line element on P and do the 

corresponding line element 0n.n. Then . _.. 

‘, . 

On the other hand, on P .' : . .bL 
:. .- 

drp ,. . ds f .9 

r: . 

. 
Si&ce the increase of QI on ds is equal to 
cp on da, and since 41 7 q*v ~. 

. ;.. - -- -, 

SO that : 3 ’ 
v 

. 

. . 

:. . 

, 

. \ .’ ; 
. . I. r 
‘ . , L II... I .- .- .. ** i 

; ’ : . : 
-.. 

. ~= Bq;-3:/‘.p .L &;+3/.,n 

.I . .’ . .- .;: '-: .' \Ik . q*n-l _ *n+l . . . ;. cd . .y i : .q,. 
,, . . 

'Since I 
. . . . .E! ..: r . . 

.; . ,- 'J$'. :- - ,, ., 1 .r -. 1' 
9% = qi,,lG'('~)I = q*?-G'(b) 

c . . 
.(59) can be wrItten 'a.8 .: --:' >. 

, 
. 

.I 

the increase.o$ 

c . 
*: 

. - 

(591 

. I 

: : 

. 

. 
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where v x q* - that fe, 
W 

(61; 

Mext, let de and clb 'be the complex line elements on P 
and l-1, respectively: I 

dz = ds ei6 = ds ei6iin 

Then . 

Since 

. 5’. 

(62) 

there is obtained by (60) snd (62) 

, 

L 

. 

. 
Integration yields the following representation of the pro- 
Tile P: 

. 
z = constant ( l/r G'(c3 l+l d[ - CL' r G’ ( t) ‘++ d% 1 (63) 

l 

* . 

the integration being psrfdrmed along 17, (The value of the 
constant factor affects only the size of .P . ) 

*. 

. 

For a c.irculat'&on-fr,ee flow and n = 2 thie formula 
simplifies to 

. 

Z = constant (b- I)=~-BI. d5')' (64) l 

, 

. 
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(64) and (61) are exactly 
paper (reference 14). 

the formulas given in Tsien's 

Parametric Representation of Subsonic Compressible Plows 

Formula (63) has been derived under the assumption that 
the integration is being performed along 1-i and that the 
existence of a conjugate compressfble flow is known before- 
hand. Both.conditions are,unessential. For the following 
general result holds: 

. 
‘Le4 G(t) be the comclex P .--- otential of an incompressible -- 

flow around a profile l-t __ - in the [ -alane, 

. G’(F) = 1 
. . . 

&& I& a a real number. such that -._I_ 

O<H,<l if G is one-valued, 

O<Mo3<d-l;r if G is multi-valued. 

- 
. 

., 
0<6<1, if G is one-valued 

n = 

1 l.//zw if G is multi-valued 

. . 

K =: p-p 

If for I_- !i DDE--& 

tGl(l>l C K (69) 

then the function 
. 

. 
. 

. G’(l) 
l-l/n 

dt - pa 
f 

G’(b) l+l 
/ 

n d.l 
. > 

. 

(65) 

(67) 

(68) 

(70) 
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c > 0, m&738 E (17) i_n a one-to-one manner into the exterior 
. I _ - __ ___ --. 

NH of a closed profile P in the g-tolane takfng c = w 

into z *co9 .and m 

considered a a function of x & g is the potential of 
a subsonic compressible flow around P (.obeyfng th6 linear- 
ised equation of stat.81 of stream Mach ,number Ma,. . 

Ihe taQ flows are conjugate (module n). mhs maDoing of 
E(P) into E(!-J) fiormalized _b_y: choosing C = l/(1 - pa). 

The proof of the mapping properties of the function (70) 
will be found in the appendix under S. Since the mapping of 
E (l-t) into E(P) is one-to-one,- cp may be considered as a 
function of (x,y). Equations(70) and (71) may be rewritten 
in the form 

. 
. 

x.= Re f(b), j = Re g.(p), Cp = R* h(t) . (72) ’ 

where the analytic functions f, g, and h are given by . 

fe(s.> = c 
r 

(G++ - pa 0' '+h) dl . 

g(c) = -fc 
r 

(G+l/n + Pa G++) d[ 
. . 

h( 8, =2CyG' 

Since . 

(7.2) 1s the well-known Weierstrass parameter representation 
of a minimal surface. Hence, dX,Y) satisfies equation (50) 
and therefore fs a potential of a compressible flow. 

It is shown in the appendix under C that as c -+a, . 
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(Cf. (C3),) 33s (66) and (71) this implies that as z-4=+- 

. 

Thus, . at inf%nfty the compressible flow is parallel to the x- 
axis and 

. 

. so that V= is actually the stream Mach number. 

It is alsg shown in the appendix under C that the direc- 
. tion normal to l"r is taken into the direction normal to P. 

S$nce the normal derivative of cp on 1-l vanishes, ,so does 
the normal der$$ative of cp on P: Thus P is a streamline 
of the compressible flow. 

. 
The fact that the,two flows are conjugate follows simply 

by comparing the velocities at corresponding points of P 
and 11. The defalls of this computation may be omitted. 

Prom the precedin 
7 

section .it follows that the paramet- 
ric representatqon (70 and (7l).y5elds all flows satisfyfng 
the condftions itated in the beginnfng oFpart II, (Nota . 
that neither 11' ' nor P are necessarily simple curves.) 

. Oonstruct$.on cf a Compressible Plow around a Profile 

similar to a Gfven Profile 

Suppose a profile. Pa and a point S on this profile 
are given and it ;is desired to:find a sub-sonic compress$.bl-e 
flow around a p$ofile P- similar to P,, possessing a pre- 
scribed stream Mach number M,( M, I< J3-p) and a.stagnation 
point near the gQ$nt S. (8% nce S is determined by the 
angle of attack the last requirement determines approximately 
the position of .P with r"espect to the undisturbed flow.) 
This problem iin $e solved as .follo.ws.. 

. For the sake of definiteness it will be assumed that the 
* profile P, has'one sharp (trailing) edge. It .may be as- 

. SUmed that- the function mapping P, conformally into a circle 



34 NACA .TN No. 9'69 

is known. In fact 
3 

this 'fun'ction can be easily computed: 
(See reference 13. The first step consists in forming an 
incompressible flow around 9, vliich possesses stagnation 
points at the trailing edge and a.t S'. The direction of 
this flow at infinity is taken as the 

Np, 1 
t-direction in the 

.plane af .Px, (c-plane). Now, if is mapped into 
M > 1 by an analytic function 

2 =, Q.) .- 

which satisfies the conditions .. 

(731 

,.. ’ 

then the sharp-trail'ng edge and the point 
Lx 

.S are taken into 
the -po$nts e'l", -8 , respectively, c(r being real (cf. fig. 
6:. ,: . . 

From 7? "'a5 is determined the modulus ri by (53): Now, 
let' Cr . and Ca. be two circLes.pa.ssing.through.the points 
emiq &d &$a . which'intorsect at'the angle nn: The. . 
function" . '. . *e '. , -.. !. . 

inverse tp'(737) maps,the'infinite domain bounded by an arc 
of ci :tnd'ar arc of C, into the e8terior of '6ome closed 
profile n. Profile n possesses trqo singular points: the 
trailing sdg.e which coincides, with the trailing edge of. P, 
and the point S. The 'angles there are nS and nn, B 
being the angle at the. trailing edgeI.of:..P,. 

Since:a'domaih bounded by two. circular arcs can easily 
be.nappe.d into. the exterior of a circle,, it is easy to com- 
pute incompressible. flows ar0und.p . '. 8 . 

. . 
Prom M, 

(18)). Lot 
is determined ,'q,. iby"(l and ,q*, (by. 

G(cJ be'the comp'lex potential of an inc.ompress- 
ible flow around, fl. which' satisfies the Kutta-Joukowski 
condition at the' trailing edge a.nd the condit'fon 

G’(m) = 1 

. 

. 
. 

. 
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. * 

. 

It is easily seen that this flow possesses a stagnation point 
at 6. The same is true for the flow with the complex poten- 
tial - 

. 3ow a compressible flow around a profile P is con- 
strutted which is conjugate (modulo n) to the above incom- 
pressible flow; P is given by (70). The velocity potential 

. is given by (71). The distorted speed q* of the compress- 
ible flow at a point z of P is equal to 

. 
qi being the speed of.the incompressible flow at the corre- . 
sponding point of n .r From q*, q is-determined by (18). 

, Since the angle between the x-axis and the tangent to 
P at a point z is equal to l/n times the angle between 
the E-axis and the tangent to l-l at the corresponding point 

4 . L it is<-seen that the profile P will possess only one 
sharp edge, the angle there being B. 

The profile disto,rtion (i.e., the di.fference between P, 
and P) is due (1) to the difference between P, and I-I and 
(2) to the difference between n and P. This distortion 
will be small if M, is not too-large. ,For then B' IS 
small and P close to 1. (See table If; in fig. 4, n aiid 
LL2 are plotted as functions of M,.) Therefore, the circies 
c 02 are close to the unit circle and n 
SiAondly, l-l/n 

close to P,. 
will be small and therefore the first term 

in (70) will be close to [ while the second term will be 
small as compared to the first. 

Of course, it is possible to construct ll -in many 
other ways. If the flow around P, which has a stagnation 
point at S is circulation-free (i.e., if a = 0), it is a .possible to set n = 1. Then P, coincides with r-i. 
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,ALt.ernative. Formulas 
. '., . 

It is useful to write the formulas transformfng an in- 
compressible flow into a compressible flow in-a different 
form. The (dimensionleas) speed at infinity, q, will be 
used as the parameter characterieing the flow. -- 

.$rom formulas (52),'(61)', and (1l)'it follows that 
. t 

, . 
. . ', 

n=JiTTp; . 

,The ,function mapping the profile n int,o the profi1.e P 
tak,e s the form 

. = n + 1 

s 

G’([> 
l-+I 

at - 
n+l 2 

2 . r G’(t) 1+1/n u. 
2 * . ..’ 

‘., 

The potentfal at the cdmpressible flow is given.by 

cp=p-zi G 

. . 

l 

. 

(74) - 

(75) . 

(76) * 

1 

(771 * 

(The'arbitrary constant appearing in (70) and (71) has been 
ahosen as l/(1 -.P2> = (n + 1)/Z).) Pinally, the speed q 
of the'compressible fiow-around P is given by 

This follow~.immedlately from formulas (4'7) and (18>,.by 
noting that in this case . 

. 

91 = un ]G’] . 
. 

. 
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Tsienls simpler formulas which are valid for the case 
of a circulation-free flow may be rewritten similarly. 

n+l Z = g - n; 2. G'(t)' dt 
2 f 8 

p is given by the same formula as before (formula .77))* 

. (?9) 

III. CONSTRUCTION,.OF SUBSONIC PLOWS AROUND A PROFILE 

UNDlGR THD ASSUFPTION OF THE ACTUAL EQUATION OF STATE 

Exfstence of Conjugate Flows 

In this chapter it is assumed that the pressure-density 
-relationis not of the linearized form but a general one, 

say the polytropic relation (Y > 1). It will be shown that 
the construction of a compressible flow for a given conjugate 
incompressible flow reduces $0 the solution of a boundary 
value problem for a linear partial differential equation in 
the physical plane of the con,jugate flow. 

. . 
The discussfon of the existence of a conjugate flow for 

a given compressible flow around P can'be carried out in 
the same way as previously.. The essentfal difference con- 
sists in the-faot that.so far it has been fmpo.sspble to.char- 
acterize cbmpletely all compressible flows possessing &onju- 
gate incompressible flows.and to determine a prior!., the 
modulus n. 

Consider a compressible fl,ow around a profile P in the 
z-plane. It haa been shown that.it is possfbls to map El(n) 
into the exterior of a circle lZ( = R by a-transformation 
which is conformal with respect to the flow'and normalized 
at,inffnity. The two stagnati.on points of the flow are taken 
into,two points . . . 

. 
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The flow will besaid to satisfy condition A if 

6 = 'n - -2cL 

trlEit is, if 

z, = .x1 

Assuze that condition A is satisfied, and set 

* . * ,., .: I?2 = -47-f Qm R s1n.a . . .., 030) 

If 

031) 

(r being ths circulation of the compressible flow), the 
flow will be said to satisfy condition g. If P = 0, condi- 
tion B implies that ra = 0'. 

In t.he case Y = -1, cp f f\6r is an analytic function of 
Z; condition A is always satisfied and l?s is equal to r. 
Therafore condition B is satisfied for 

r, =O and for r#s, M&m4 

It' is conjectured (but has not be,en proved) that A is 
always. satisfied and B is satisfied if M, does not exceed 
8om8 hi,piting value. 

., Condition 'A is' certainly satisfied (by rea.sons of sym- 
metry).if either of the two geometrical conditions hold@: 
. . 

(ii P is .symmetric with respect to the x-axis and the 
flow is circulation-free. 

,(ii) Both P ,and the flow around P are symmetric with 
res.pect to the y-.axis. 
wit,h circulation.) . . 

(This type of flow include.8 f.lows 

. 
Flqws of, type (i) obviously satisfy condition B. In 

general, it may be assumed that B will be satisfied in many 

. 

. 
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. 

, 
. 

cases. For the flow satisfying the linearized equation of 
state is a rather good approximation to the flow satisfying 
the actual equation of state and therefore Pa should not 
differ too much from r. - . 

If a com-oressible flow satisfies both conditions A '- ' -- 
and B, then it is conjugate (modulo n) to an incompressible - 
flow around a profile n & the t-plane7Ifr = 0, n b 
arbitrary and may be chosen as 1. - If r # 0, n agiven bx -. 

n = 
r2- I? ’ ‘* __ 3 .- 

. j I -. K& 
L 

Y The" proof is'almost exactly the same as the one 
for the special case Y, = -1 and it rfl.+ll 
tF.0 argument. 

“a.&&, suffice to sketch . 

Let a,. * 
lZ[ = R 

be the complex potential ‘of, a rlow ar-ound 
which has stagnation paints at Z1 

. 
and, Zs and the! 

velocity q- at infinity,. 

"1 = 9 CD 'p .+ $j 

Then Q, has the form 

. . 
- ir 2 log Z + constant 

2l-r 
-. 

ra being given by (80). 'As befor'e, u* -'iv* 
fun .ction of . 

is an analytic' 

If 
Z and has. (according to .Lemna 2).the form (42). 

there exi8ts.h conjugat'e (modulo:n) incompressible flow in 
the -tiplane (around a profile I-J ), its conpiex potential' n 
considered as a'function of Z must have, the form . . . 

s1 = N-2, (A a real constant') 
. 

As before, the function which maps lzl > R into 2a-t~ ~111 
be, given by 

.z 
, 

5 (Z) = A 
s 

3 (u.* - Iv*)-~ dZ. (83) 
. dZ' 

and the requirement that 
condition 

R be a' closed profile leads'to the 

UT, ra 
---‘Z d, 

:A*, 9, 
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-. I 

which I.8 satisfied if either 
~ . 

(84) 
L 

. 
. r f ra =..o . ‘, 

or n' is determined',by (82.). 

Conversely, if (84) holds, formula (83) yields a closed 
profile I-I (note that by.(81), ,OC nC 2) and the incom- 
pressible flow around n wh.ich.has'the velocity qi,ol = q*-n 
at infinity and stagnation points at b(ZJ and f(Z,>, is 
conjugate (module n) to the,given compressible flow. 

. 

It can be easily seen that the conditions A, B are not 
only sufficient but also necessary for the existence of a 
conjugate flow. . 

Solution of the Inverse Problem 
. 

Suppose that an incompressible flow around the profile 
n in the t-p1 ane is conjugate (modulo n) to a compressible 
flow around the profile P in the z-plane. It has been . 

' shown that cp and. J, (potential and stream function of the 
compressible flow) satisfy the equations (33) in the distorted 
hodograph plane. Since the',correspoadence between the dis- 
torted hodograph E* and m--o ‘3s conformal, it follows 
that cp and @, considered as functions of [ and '0, sat- 
isfy the equations 

22 'a* 
. : .aq ,= -Ir ,z ;, 

. . 
and the second-order equations 

(85) 

. . 

(66) 

(87) 

. 

. 
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If the incompressible flow around n i3 known, T is 

a known function of g and. v. For, T "is a known function 
of cl. (see (27)) and therefore also of 

P 
* (see (14). And 

at COrr08pOnding point8 of E(P) and E n), q* and qi 
(the speed of the~incompres~sible.flow).are connected by the 
relation . .: 

-. . ql. = q*n . c33) 

Therefore the equations (85) to (87) are line8.r. 

The boundary condi'tions for ',p and .'I& are 

: 9 = constant, $I? = 0 . 09 .I 
(89) 

& indicating.differentiation in tie direction normal to n '. L 
At infinity cp and \(I must satisfy the conditions 

. 

(90) 

. 

, 
where C, and C, are positive e.onstants. This can be &as- 
ily verified by noting that the mapping of E(P) into m-3 
preserves the horizonta.1 direction at infinity. .The zLuxeri- 
cal values af these constants are-:of no consequence,s%nce 
both the differential equations and-.the boundary condition8 
are linear and homogeneous. 

Function xjt must always be one-valued; cp 
valued only if r = 0. 

is one- 
tioreover, cp and \Ir must satisfy 

the conditions: 

grida% $ < ~1),. 'grad" I) < C;, (92) 

Thus, it is seen that the equations (86) can bs ihter- 
paeted physically as tIie equations of‘motion of a compressi- 
ble fluid of variable 'delisity F, ? which-+8 a given function 
of space: 

l 

. 
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(93) 

n is a streamline of this flow and at infinity the flow has 
ths positive e-direction. 

Assume that cp is known as a function of e and 7 
ad set 

5 = &jqg (94) 

(5 is the speed of the fictitious compressible flow of den- 
sity F>. Let ds be a line alement on P and do the 
corresponding line element on f-I , Then 

SO that 

$?.= z’ 
c 

. 

Since the angle between 'ds and the x-axis is' 0.. and that 
between 2.a ad the [-a~i~~'is 6i = ae, it is seen that a 
representation of the profile P can be 

: s 

.V 
a = Lie i6 au 

q 

The coanection between the profiles 
be expressed by the formulas 

obtained by 

(95) 

P and n can also 

(96) 

. 
. 

. 

. 
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* 

. 
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where . Bp..is the radius of curvature of the profile P at 
sotie pdint . z and 
the 

Rn the radius of curvature of n at . 
corresponding point t. Angle 0 is known along rI and 

$9. is 9, for q* = ,q;/n. .If . ;i is known along i-i , then . . 
the profile 
(96). 

P can be constructed graphically, using (95) or 

Solution of. the..Inverse Problem (Continued) 

It has been shown in'the preceding section that the con- 
struction of a compressible flow conjugate to,a given incom- 
pressible 'ilob e'epdrids upon the solution of a classical 
b0undar.y ,value.problem for a linear partial differential 
equai't‘ion (equation'(Ef6-))"'or equatidn.(87). The integration 
may be performed not in E(n) but in a aimpler domain, say 
in the dcmain exterior to the unit circle. For a conformal 
tran'sformatidn.of. :E(I-W into such a-domain takes equation’s 
(861; '(87>*into;equations of the same form and does not af- 
fect thc‘&uxiliary conditions. ,Nevertheloss, the actual in- 
tegration would be extremely laborious, especially in view of 
the fact thit'the coefficient T would be'given.either numer- 
icaIly..or.by a very,cdmplicated analytical expression. Fur- 

.ther research is.necessary in order to reduce the computation- 
al'work-to ,an acceptable.minimum. 

The physical interpretation of equations (85).given in 
the foregoing'shows that these equations can be solved mechan- 
ically by G. I. 2aylor's well-known'method of the "electroi: 
lytic bath'*., !S ee reference 14.1 It should be noted that, 
whereas T&ylor applied his method inorder to obtain a se- 
quence of successive approximations to the solution of the 
direct problem (i.e., to'the computation of the compressible 
flow pa8t.a given profile), in this case the method immedi- 

.ately furnishes.t'he exact solution of the ifiverse problem. ,. . . 

., : 
_- - 'For 8lbv fi0bts (P.e for flows where the local Mach 
number is small) the foliiwing approximate method can be 
used. 
. 

.: The cpefficient'.. T-' .in th 
for M= 

e equations (85) is equal to 1 
p: and .decreases very slovl$.as 

about 01.6, 
M increases t'o 

a8 seen from table I, 
tion~'wi.th Y.= 

where the polytropic relay 
.- 1.405 has been assumed.,(,cf. also,fig.' 2). . . ; 
‘Therefbre, for'lo$‘tiach numbers,'the'dengity 'F -'of the 

fictitious flow in the c-plane (see preceding section) is 

. 
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almost constant-so that qi will be a good approximation to 
5- Replacing q by q1 = q*n in the formulas (95), (96) 
yields 

e = 
f 

q*n ,i8 da 
Q , 

and 

BP 4"n -=n - e 1 -=- 
Rrl 

t 
Q 01 n 

(97) 

* 

. 

(98) 

9 Sinue - 'is known as a.function of qi and therefore 
q*n 

known a1ong'f-l , the profile P can be immediately con- 
structed. 

. 

From figure 2, where 
it'fs seen thzt 

and * are plotted as func- 
tions of;M, the p:ofile distortion. will be, 
small ,for small. values ‘of M, and for P close to 1. 

. 
Thie‘approximate.method is based upah setting) T E 1. 

The same assumption i‘s made in the Tchaplygin-&man-Tsien 
approximate method; However, there the equation of state is 
changed accordingly and the'resulting differential equation 
is integrated rigorously; whereas here the rigorous equation 
is solved approximately. (However, see also reference 12, 
P* 348.) 

Constructfon of a Flow around a Profile 
. 

Similar to 'a Given Profile 
. 

Suppose It is desired to construct a compressible flow . 
around a profile P similar to a given profils P, and hav- 
ing a prescrfbed stagnation point S. 'For the sake of defi- . 
niteness it is assumed that P, possesses one sharp trailing 
edge. 

Since the connectton between n and M, is not known 
a priori it is advisabls to start by choosing a value for n 
and constructing.a profile f-- such that if P is obtained 
from n, by ueing .(95) with this value of n a profile pbs- 
eessing only one sharp edge will result. Profile I-7 can be 
construofed by the method .described in the preceding chapter. 

. 

. 

. 
. 

. 
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, . * -. 
Let :GCCI be,the,potential:of a flow around n which 

has tLe.velocity 1 tit infinity... It is now necessary to find 
a value q*, such that if q* is determined as , 

. . 
. 

: . 
: 

and' 'T is determined as T.= T( *) 
tained'bg"integrating equations 't 

the values of E ob- ' 
85j'to (87) will lead to a 

closed profile P, when substituted in the relation (95). 
' At the present state of the theory this can be achieved only 

by a trial-and-error method. It is convenient to start with 
the value of qy=+ given by f74).and then change this value..so 
as'to obtain a clos'ed Profile' P. Since this involves the e 
integrat.i,o,n,of:the"equatPons (85) to (87) for different‘func- 

- tions T, the amount‘of computational work is rather oonsid- 
erable. , 

'In the 'c'ase 0f.a circul&tioh-.free flow the situation is . 
much simpler for qcD is indepenkeht o'ff-' n ' and n * may Se 
taken as 1. 

A method is given to transform's two-dimensional 'incom- 
pressible flow around a closed profile into a subsonic corn- *-- 
pressi,b.le flow pr,o.upd another closed profile. The profile 
distortion is.smalJ for imall'v.ilugs of the' stream Mach num- 

: ber. . . . 

1 
In the casg of the actual equa$ion of .state the trans- 

. formation depends upon the solution .of a classical boundary 
value problem for a linear partial differential equation. An 
approximate methoa .of solving 'this problem is indicated. 
Further theoretical work is required in order to establish 
the validity of the method in all cases and in order to reduce 
the amount of computational work. 

It'is.bel.ieved that, after the solution of this inverse e 
problem is completed, a way of solving the direct problem . 

* (computation of the fl-ow around a given profile) will b,e open. 
c If Van K&m&n'.s and Tsien's linearized equation-of. state 

t is assumed, this transformation is carried out completely and . 
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in a closed form not only for flows.without circulation , 
(which was a>ready done by Tsien) but for flows with circula- 
tion as well. 

Concerning the applications of the linearized equation 
of state (?/ = -1) the following m&y be'said. This equation 
of state can be applied coneistently. But, it also seems 
worthwhile to try to use the assumption Y = -1 only in 
order to obtain the values o.f the dimensionless apeed'q *and.to 
cQmFte the resulting Mach ‘number by means of the rigorous 
equation of ,state. ,, 

Other applications of solutiona based upon setting 
Y = -1 alSO suggest.th‘emselves, for instance, to the solu- 
tion of the exact equation of motion by successive approxima- 
tions (by usihg the solution for. r = -1, instead of the 
solution for an incompre&sible flow, 
tion); *' " 

as the first approxima-' 

Numerical examples and.+ comparison with other methods 
will' be given‘,in.a &ubssquent report; 

, 

Brown University, 
Providence, R. I., .Apri+ 29,.1944;. : 
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. 
-. :APPENDIX - . 

. . . 

A. This e.etqt$on.contains, the proof.of the f-oIlOwing * 
Lemma 1; &.* '1 ,,' ,. 

b = e(x,yL 71 = Ti(x,y) (Al> e 

be a transf&mat.ian x a,'domain. D 'in the (-x,y)-plane into 
'rd%rnkl'n d in the ([,V)-plane, 

-- 
$& 'cp and + bs functions . 

of x and y defined in D. 
frma$i~they sl'a 

(% virtue of the above trane- 

@Q defined in .A:. 
ale,obe cbh,sid.ered 8s fzct'f'ns of g and - - 

-m 
en'cial 

-3 I:fcp'and \L .satisf.y in - D the differ- 
eauatfons 

. 

:. . . (A2) 
. ' 

. * , . i I 

g.& :.:a ) 
. . .I... ~. ;. ,- . I. .,. . . ’ 
a .u.;differIential eau&tSo'ns:,. . 

. 

. 

.theh.the tran.ePormation"tA'1',)'~'con.fbrm~l with reipect to the 
followinn Biemann metric defined in D; 

. 

dSa = e dx a + 2f dx dy + g dy2 . (A41 
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. - 
. 

+ 

. 

. 

c 

I 

. 

. 

8 = cOsa e + BZ 
A2 

sina (J 
1 

f = (I. - 5) sin 6 co8 6 . 

g = sin28 + - 8" co8' 8 . 
A2 I 2 

(A5) 

&I& 0 is the anple between the line Q = constant the and 
x-axi 8 : 

Geometrical proof. (Cf. fig. 7.j- Equations (A2) show - 
that the lines =.constant and IV = .constant subdivide 
the (x,y)-plane ?nto infinitesfmal'aectangles of side ratio A. 
Similarly, equations (A3) express the fact that the lines 
rp = constant and Q = constant subdivide the (El?)-plane 
into infinitesimal rectang;es of side ratio B. Therefore, in 
the neighborhood of some point (x,y) the mapping (Al) can be 
described as the product of a similarity transformation and a 
transformation which contracts all lengths in the direction 
of the line q = constant in the ratio B/A. But a mapping 
conformal with respect to the'metric (A4) is exactly such a 
mapping. For, let ds = (dx, dy] be a line element in the 
(x,y)-plane and let a be the angle between its direction 
and the x-direction. Then dx 
and x = *((e - c,) 

= ds cos U, dy = ds. sin a, 
is the angle between this 'Eine.element'.and 

the line w = constant. A short computation shows that the 
non-Euclidean length of ds, as given by (A4), is equal to 

: .a . . 

is 1 - i;l -'2j2/A2) Tin" x 

Thus, for 
dS = 

ds '$.ar.allel to the -line cp' ='constant, 
= iz/A)ds, and'for ds parallel to the line 9 = constant, 

as . 

Analytical croo'f.- Equations (A3) can be written-in the 
form 
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13~ use of the relations 

. ax 3aJ ax 
SJ= ay* Gz -3 g 

a (X,Y). J= 
w ,N 

. . 
this can be wrftten in the form 

Introducing the valtibs of 
and using (A6) gives 

a*/ai and &/au given by (A21 

. 

. 
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Solving for at/ax and ag/ay gives 

If the notations given by (85) are used, these equations &an 
be written in the form _ 

. But these are the well-known Beltrami equations which express 
the fact that the mapping (Al) is conformal with respect to 
the metric (A4), 

w 
Remark: The converse of the lemma is also true and can 

I be proved similarly. A transfdrmation (Al) conformal with 
. respect to the metric (A4), (85) takes ep and JI satiefying 

(A2) into functions which satisfy equations (A31 in the 
. ([,V)-plane. . . 

Bi This section contains the proof of lemma 2. If E(P) 
is mauped into .E<n) los. a transformation 

c 
which is conformal with respect to a subsonic comdressible 4 flow azund P andsuch that 

-- 
P-P li . 

. 
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: s.L..+ 1 3 ----3* 0; ar, “. ax , a27 ax e 0, ’ 2 -jd-w (31) . 

, : .’ aa, x2 +,y= ,--G- w . 
., . 

then u* - iv*, considered as a function of m .- t=t+iv 
"h.&'u neinkborhood of' ,t =:oi ~.Iraurent,developmant 

where 

u* -,iv* = qi - irl l + . , . I_- w (B2) 
. . 2,ir .5 
.;' 

(B3) 

r being the circulation &:.m flow around P. '. J . L 
The above transformataon-.can be written in the form 

x .I, 

s 

Y 
e. =A+ at (9 , "b'l dx, aek yv') dyl 

” ‘1.. : ’ a, 
, ax* af ,. 

=A+(x-a) + 

: x: 
..:. :r) 

a 

where (a,b) is SOI& point of -Ii ('P > ,' 

. 

c 

dy’ . 

. 

. 
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. Introducing " ' L . 

If ues is made of ;l$sp;tal'e rule and (31) , it is seen that 

. 
. shows that 

. R2 2 a = xa + N,g . 

c 

e = x -i- o(R) . 
:. - . : . 

v= N-y + o(R) . 
Therefore;- ’ 

(34) 

1 s -= 1. L= 1 
5 

+a& 
x -!- fN,.y -I- o(R) x + iN, y 0 R 

Since uf - iv* f's a one-valued anklytic funCtiOn of t 
in 'Elc(n) it possesses the' Laurent development 

u* - Iv* E q*, y Ot + iB + aa + iB= 
% 5” +.*- 

(J35) 

Hence, fdi: sufkiciently large qalues of xa + ya, 

u* - fv* = .q*, + 
a I- ip 1 

x- + -iN,: 
i-o- , . 

0 06) 
R 
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so that - . 

u* = qem+ ax + S&c.. + o + 
X a + Nz y2 0 -‘. 

v* = a% Y - Bx + o 
x. 2 + Nz ya 

. 

(B8) 
. 

= 9 *2 + 2q* ax + 8Na + ol 0) co 
x2 + NE yz 0 B 

(310) . 

8' 

Next, 4/q* is an analytic function of q*, so that 

9 
9" = qz k! + A&q* - q*, 1 + o(.\q* - q*\ 2, (311) - 

Is” - q*j2 --+ 0 . 

cwhere 

1 =- 
P2 

q’ 

since 

%f = d exp 
dq dq f * 9 a_ 

(Cf. the definition of the conjugate speed q*.> 

. 
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: . *. . 

By (Bll) and (ilO) 1.1' ,. ., '. '9.. 

4,. . . i . . . . _,: : : 
~.'Z 

v 9 =- v* = Q en y - B=+ 
9* qtt: x= + Nz-ya . . 

Th&ymbof p 
. . _ . :. 7,- :. 

; i 
is ai analytic function of q 

fore also of q*, Hence 
.' 

. .' . ' ,. . . . . . '. " .I, . . . . . . . . = 
p pm + B,qh* - q*, ) + O(]q* - q*m/,l") 

Is* - 

where 
. : 

55 

(B13) 

(B14) 

and there- 
.-, _ 

. 
(B15) 

- 016’1 : 
, 

I . 
‘a,,‘.‘, . :9” ect . . . . ,: ,: : 

! :-.. * 
: a’ :.. :’ 

,*’ 
,. ,. . . I 

ai& 
.’ ., ..-. ..’ . 

, ;%y :B:ekn.o11:11$1 s equation, . 

. By (B15) and (BlO) . ~ . . . : ,y , . ., . . : 

P P, + Boo = ax + BN, Y + 0 1. 
X2 :+I $,; y2 0 :. R 

p17 1 

so that, by (B13), (B14), and (Bl7), ,' ' r . Li : .s : ..P. - 



56 NACA TN No. 969 

ax + PN, Y 
PU = PO> q2co + P,$ NC0 *a 

+ Nz y" 
.-‘- o(i) (Bl8) 

CD X 

PV = Pm s,CGNJ-BX 
S; xa + N; ya . 

+. L 
0 R 

(R19) 

Now, let C be any simple closed curve 
profile P, ,,f-n it8 inteiipr. Then 

I?= 
.f 

u dx + v dy 
' & 

0 = 
s 

pv dx - pu dy 

C 

In particular, it is possible to take for 
with the se&-axis 

R a=R, b=- 
N Ln 

the equation of which is 
. x2 + Nz y2 = R2 

For sufficiently large values of R 

C 

the 

, 
containing the 

- . 

I 

(BZO) ' 

0211 

the ellipse CR 

development8 
introduced for v, pu, pv previously obtained may be 

under"ihe integral signs in (BZO) (321). Then 
theorem and denoting the interior'of CR by ER 

using Green's 
results in 

r- s s, dx + 1 
F (ax + /3N, y) dx 

CR 

, 
+ %-a (UN, y - 

c 
bd dyl 

I 
+ o(l) 

= I 2-pne$ !h 8 rr,x dy + o(1) 
R' q* 

dy + o(1) 
‘m 
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. 

Letting R --3 w yields 
. 

whence 

B = _ NW r &3 
2Tr 9,' 

a=0 (B22) 

. If this is substituted intO"(B5j, 
(B3) is verified. 

it can be seen that (B2), 

I I . . 'C. This section is devoted to the pr'oof of the properties 
of the mapping function (70) whioh have been announced and 

. used in deriving the parametric representation of SUbSOniC 
flows with 'Y = -1. .- . . . '. . . . . * 

First of all, 
file P 

this functio;($ps fl into a closed T)TO- 
and is one-valued in . In fact, let J bea 

closed curve around I-I and d 6 the increase in w . goes once around J (J may coincide with ll 1. 
r 

iorakffi- 
. ciently large valuesSof IL G' ( t> has the Laurent develop- 

ment 



58 NACA TN No. 969 

Therefore : 

If A, = 0, d = 0. If A, # 0, G(c) is not one-valued, 
so that n = l/J--F= and theref.ore 

(1 - l/n) - pa (1 -I- l/n) = 0 

so that d = 0. 

Next, let dz = dseie be the complex line element on 9, 
di = daeiei the corresponding complex line element on n . 
On n 

Gl(b) E IG’l es161 (Cl) 

so that by ('70) :. . 

dz = c lQ'[. l--l/n 
(1 - p2 JIP'I a/n > eieiin da ((32) 

. . 
and therefore 

ds 
- = C ]G'[ l-l/n 

(1 - 
da 

pa lGI[ 'I,, 
1 . t 

By virtue of (69) 
'stagnation points 
Hence-the.maoping 

. 
Furthermore, 

all finite values 

Finally, .tha 

as/do cannot vanish except at the two 
where. G' i 0, and.is positive elsewhere. 
-of .f-j into p';.& one-to-one. .. * 

. :. 
it is easily seen that z is finite for 
of t and z=cn for ' 5 = a. 

,Jacobban ..' .:.: -;.. 
, 

.' 

does not vanish & -- E(I-7). ,Fqr , *.' :. - . ,. . . 

. 

. 
. 
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r* 

. 

. 
And 

. 

@. C(Gt '-lb ,: fL2 GII'1/TL) 
(C3) 

az -=f l-l/h -I- pa 0' 1+1/n 
arl 

> 

ah YT) 
a([, n1) 

= I,($ E)z c']G'[ 2-2/n (1 - p'jG'[ 'I") 

c The expression on the right-hand side is not zero, for it is 
always assumed that there are no stagnation points within the 

. flow and (1 - p4 ]G11'4/n) > 0 by virtue of (69). 
* 

From the preceding results it follows that (70) map's 
E(fl) into a simply connected domain E(P) -- containing % 
point infinItea bounded a p closed curve P. 

From (C3) and (65) it also follows that as --r------4 03 

Finally, if d{ = i doe i-91 is a complex line element 
situated at a point of l-i and normal to I-I the correspond- 
ing lfne' element dz is, by (70) and (Cl) Liven by 

* 
az = . 

ic IG1 ,1-1/n (1 + pa lG1 I’/,, eiei/p dfl 

. 
By comparison of thits with (C2) it is seen-that-&& direction 
normal to n u taken into the directdon normal to P. 

. 
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dimenfdonleas deani* (f), and the ooefficiont of the sywtrked 
hodo.gaph epvatlon (T) m functions of the ai~ert8ior5ess speed 

1: q. (2’ 1.44X; % = .911976; ody the mntissaJ of log p 
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.lOOlO 

:$Z 
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.9Sl94 

.24l41 

.26l60 

:%Z 
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.89 
A8 

:Z 

:C 
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40 
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:% 

1: 

:Z 
.4e 
.49 
.50 

.61 
:Z 
1: 
.m 
.67 

2: 
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.31m 
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.284ea 

.87524 
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.47Ol8 
A398 
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.67ma 
:BEW& 

.6zlss 

.626l4 

.98644 
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.02lm 

.90427 

.99856 
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.99099 

:EE :ZZ8 
.91008 .96766 
.00697 .9e888 
.90178 .RBBso 

:E% 
.8W9 
.98420 
.81991 

.oezm 

.S9l68 

.979ea 

.977m 

.sTsT? 

:i%% 
2% 
.mE49 

.97ii47 

.97099 

.53Bsa 

:S 

:etcE 
A4ol.a 
.m4B3 
.82958 

.mm 

:9Z$ 
.94768 
.942a4 

.98800 

z& 

.91472 
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3 Constants entering in the computation of the con- 

l 

. 

. 

‘. 

l 

:E 
.73 
.74 
.75 

-76 
.77 
.78 
l 79 
.80 

.81 

:z l 

:E 

:S 

.88 

.09 

.BO 

.91 
Q .= 

laploq* 

TABLS 

q* 

, (oellclu 

Y 

-74927 

:;%Z 
.7647B 
.79675 

:Z%! 
.94l76 

:%2 

.80877 

.62085 

.83300 

.64521 

.85749 

98255% .96059 .66964 
985108 .9802B .8S226 

99E% :%E ::::2 
991666 .98145 .91990 

995760 .985+X3 
995505 .B8970 
997025 .99317 
998313 .996l2 
999528 .99845 

999957 
cmooo 

.99990 
..ooooo 

.93287 

.94547 

.95834 

::7dz 

.99747 
1.00000 

1) . 
P 

.76654 

.76045 

:E2 
.74l66 

.86396 
-85303 
.84l21 
.82844 
-81459 

.r3555 

:E% 
.71654 
-70984 

.79957 

.78325 

.76547 

.74606 

.72481 

.70329 

.89670 

.69006 

::E; 

.70146 

.67570 

.64713 
-61524 
.57934 

.66SSl .53646 

.66312 .49118 

.65628 .43520 

.64942 .36628 

.64252 -27434 

.63558 .1119O 

.83425 .ooooo 

T 

TABLE II 

jugate compressible flow for F = - 1. 

.05 
2: 
.20 
.25 

.999 

:El 
.980 
.968' 

.025 . 001 

.050 .003 

.075 .006 

.101 .OlO 

.127 .016 

2: 
.40 
.45 
.50 

?Z 
1:091 
1.120 
1.155 

.954 

.s‘ar 

.917 

:Z 

.55 1.197 .835 .a00 

.60 1.250 .800 .333 

.65 1.306 .760 .369 

.70 1.400 .714 .406 

.75 1.535 .651 .454 

.80 

.85 

I2 
1.00 

1.667 
1.898 :%G 

.500 .250 

.557 .310 

.627 .393 

.724 .524 
1.000 1.000 

p=s*am /u2 

.024 6.51 

..033 5.53 

.045 4.72 

.057 4.21 

.oT2 3.73 

.090 

.111 

%~ 
.206 

2:71 Et 

. 2.45 
2.20 

2.00 

:*:I: 
1:30 
1.00 

pp 

40.16 
20.26 
13.65 
10.38 

8.43 

7.13 
6.21 
5.53 

::Ei 

4.23 
3.95 
3.71 
3.50 
3.36 

3.17 
3.04 
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